Are Chemical Constituents Exhaled in a Room Where e-Vapor Products are Used?

Mohamadi Sarkar¹, <u>Jianmin Liu¹</u>, Qiwei Liang¹, Xuejun Peng¹, Michael Oldham¹, Ali Rostami¹, Karl Wagner¹, Gene Gillman², and Anne Marie Salapatek³

¹Altria Client Services LLC, Richmond, VA USA. ²Enthalpy Analytical Inc., Durham, NC USA. ³Inflamax Research Inc., Toronto, Canada

69th Tobacco Science Research Conference September 21, 2015

Passive Vaping Evidence Gaps

TOBACCO CONTROL

"Little is known about the environmental impact of e-cigarettes."

"A study evaluating the indoor air quality in other various locations (e.g., car, home, office, school and public indoor areas such as transit stations) during and after e-cigarette use provides important information about environmental impacts. This information should be collected using a representative sample of the e-cigarette products currently available."

Questions to be Addressed

- What are the levels of e-vapor constituents in room air where e-vapor products are used?
- What is the exposure to e-vapor constituents in non-users?
- If there is measurable exposure to e-vapor constituents in non-users, what is the potential for harm from this level of exposure?

:2015(69) - Document not peer-review

ALCS Approach to Address These Questions

- Review and monitor published literature
- Conduct studies to generate data
 - Two initial pilot studies
 - Controlled clinical study
- Develop a computational model to predict air levels of e-vapor constituents under different conditions
- Assess risk to non-users based on evidence collected from studies and model based predictions

Study Design

Objectives:

- 1. To evaluate the exhaled breath, room air and surface levels of selected constituents following the use of various types of e-vapor products and conventional cigarettes under controlled and *ad lib* conditions.
- 2. To generate input parameters for validation of a computational model
- Study Design
 - Open-label, single-center, observational study
- Study Participants (Total n=40)
 - Healthy males and females, 21 years and older
 - Current daily e-vapor users (n=20)
 - Current daily refillable tank users (n=10)
 - Current daily conventional cigarette smokers (n=10)

Study Design

- Products Tested
 - MarkTen® 2.5%a Classic Electronic Cigarette (M10)
 - Prototype Electronic Cigarette 2.4%^{a,b} (GS)
 - Ego-Tank and subjects' own e-liquids (Tank)
 - Conventional cigarettes, subjects' own cigarettes (CIG)
- Investigations
 - Exhaled Breath Samples (EBS)
 - Room Air Samples (RAS)
 - Surface Samples (SS)

^b Similar to commercial GreenSmoke® electronic cigarettes

Study Conduct

Exposure Room

Volume 113 m³ Air exchange rate 2.25/hour

Clinical site for study conduct

Sample collection and analysis

Sampling Stations

Sample Collection – M10 & GS

Sample Collection – M10 & GS

Sample Collection – M10 & GS

DAY 1

Sample Collection – Tank & Cig

Constituents Analyzed

Constituent	EBS	RAS	SS		
Propylene glycol and glycerin (ISO 16200-1)					
nicotine propylene glycol glycerol	√ √ √	√ √ √	√ √ √		
Carbonyl compounds (ISO 16000-3 & EPA TO-11A)					
formaldehyde crotonaldehyde o-tolualdehyde acetaldehyde butyraldehyde (butanal) m&p-tolualdehyde acetone benzaldehyde propionaldehyde isovaleraldehyde hexanaldehyde (aka hexaldehyde) valeraldehyde 2, 5-dimethylbenzaldehyde methyl ethyl ketone (MEK) acrolein	√ √				

Constituent	EBS	RAS	SS		
Volatile organic compounds (ISO-16000-6)					
1,3-butadiene benzene isoprene toluene furan ethylene oxide vinyl chloride propylene oxide nitromethane 2-nitropropane vinyl acetate ethylbenzene					
Trace metals (EPA IO-2.1 & 3.5)					
arsenic cadmium chromium nickel		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

EBS=Exhaled Breath Samples; RA= Room Air Samples; SS=Surface Samples

Constituents Analyzed

Constituent	EBS	RAS	SS
Propylene glycol and g (ISO 16200-1)	llycerin	\sim	
nicotine propylene glycol glycerin	√ √ √	$\begin{pmatrix} \downarrow \\ \downarrow \\ \downarrow \end{pmatrix}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Carbonyl compour (ISO 16000-3 & EPA T		$\hat{}$	
formaldehyde	√	4	
crotonaldehyde o-tolualdehyde acetaldehyde butyraldehyde (butanal) m&p-tolualdehyde acetone benzaldehyde propionaldehyde propionaldehdye isovaleraldehyde hexanaldehyde (aka hexaldehyde) valeraldehyde 2, 5-dimethylbenzaldehyde methyl ethyl ketone (MEK) acrolein			

Constituent	EBS	RAS	SS		
Volatile organic compounds (ISO-16000-6)					
1,3-butadiene benzene isoprene toluene furan ethylene oxide vinyl chloride propylene oxide nitromethane 2-nitropropane vinyl acetate ethylbenzene		イイイイイイイイイ			
Trace metals (EPA IO-2.1 & 3.5)					
arsenic cadmium chromium nickel		\ \ \ \			

EBS=Exhaled Breath Samples; RA= Room Air Samples; SS=Surface Samples

Nicotine

Nicotine

^{*} Source: Occupational Safety and Health Administration Regulations (Standards – 29 CFR 1910.1000) Table Z-1 Limits for Air Contaminants Value shown as 8-hour time weighted average permissible exposure limit

Propylene Glycol

Propylene Glycol

^{*} Source: American Industrial Hygiene Association (AIHA) 2013 ERPG/WEEL Handbook Value shown as 8-hour time weighted average permissible exposure limit

Glycerol

Detection Limit = 4.11 ug/m3

M10 = Mark-Ten® 2.5% Classic; GS = Prototype Electronic Cigarette 2.4%^A; Tank = Ego-T Tank and subjects' own eliquids; CIG= Conventional cigarettes, subjects' own cigarettes; BL=Baseline; CTRL=Controlled Use; Ad Lib = Ad lib use

Formaldehyde (Test Groups)

M10 = Mark-Ten® 2.5% Classic; GS = Prototype Electronic Cigarette 2.4%^A; Tank = Ego-T Tank and subjects' own eliquids; CIG= Conventional cigarettes, subjects' own cigarettes; BL=Baseline; CTRL=Controlled Use; Ad Lib = Ad lib use

Sampling Stations

Surface Sample Levels

Nicotine

Conclusions

- Under study conditions with the products tested
 - Room air levels of constituents during the use e-vapor products were several fold below the current occupational regulatory and consensus limits^a
 - Surface sample results suggest that thirdhand exposure of non-users to nicotine is unlikely
- Further research is needed to determine the exposure to e-vapor constituents in non-users under different conditions of use and the potential for harm associated with this exposure

